Mobility and saturation velocity in graphene on SiO2

نویسندگان

  • Vincent E. Dorgan
  • Myung-Ho Bae
  • Eric Pop
چکیده

We examine mobility and saturation velocity in graphene on SiO2 above room temperature 300– 500 K and at high fields 1 V / m . Data are analyzed with practical models including gated carriers, thermal generation, “puddle” charge, and Joule heating. Both mobility and saturation velocity decrease with rising temperature above 300 K, and with rising carrier density above 2 1012 cm−2. Saturation velocity is 3 107 cm /s at low carrier density, and remains greater than in Si up to 1.2 1013 cm−2. Transport appears primarily limited by the SiO2 substrate but results suggest intrinsic graphene saturation velocity could be more than twice that observed here. © 2010 American Institute of Physics. doi:10.1063/1.3483130

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Polar Phonon Dominated Electron Transport in Graphene

The effects of surface polar phonons on electronic transport properties of monolayer graphene are studied by using a Monte Carlo simulation. Specifically, the low-field electron mobility and saturation velocity are examined for different substrates (SiC, SiO2, and HfO2) in comparison to the intrinsic case. While the results show that the low-field mobility can be substantially reduced by the in...

متن کامل

Diffusive charge transport in graphene on SiO2

We review our recent work on the physical mechanisms limiting the mobility of graphene on SiO2. We have used intentional addition of charged scattering impurities and systematic variation of the dielectric environment to differentiate the effects of charged impurities and short-range scatterers. The results show that charged impurities indeed lead to a conductivity linear in density (σ(n) ∝ n) ...

متن کامل

Inelastic scattering and current saturation in graphene

We present a study of transport in graphene devices on polar insulating substrates by solving the Boltzmann transport equation in the presence of graphene phonon, surface polar phonon, and Coulomb charged impurity scattering. The value of the saturated velocity shows very weak dependence on the carrier density, the nature of the insulating substrate, and the low-field mobility, varied by the ch...

متن کامل

Manipulating graphene mobility and charge neutral point with ligand-bound nanoparticles as charge reservoir.

The high carrier mobility of graphene makes it an attractive candidate for future electronic device applications.(1) In SiO2/Si-supported graphene devices, the mobility typically varies from 2000 to ∼2,0000 cm(2) V(-1) s(-1).(2) By removing SiO2,(3,4) much higher mobility (2 × 10(5) cm(2) V(-1) s(-1) in the latter) has been obtained, suggesting the importance of the Coulomb scattering in graphe...

متن کامل

Current saturation in zero-bandgap, top-gated graphene field-effect transistors.

The novel electronic properties of graphene, including a linear energy dispersion relation and purely two-dimensional structure, have led to intense research into possible applications of this material in nanoscale devices. Here we report the first observation of saturating transistor characteristics in a graphene field-effect transistor. The saturation velocity depends on the charge-carrier co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010